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ABSTRACT

Interleukin (IL)-18 stimulates T helper 1 (Thl) and Th2-mediated immune responses, and has been shown to
modulate acute graft-versus-host disease (aGVHD). It is still unknown whether increased IL-18 levels during
aGVHD are of host or donor origin, and how the absence of IL-18 has an impact on migration and expansion
of conventional CD4*CD25~(Tconv) and CD4*CD25™" regulatory (Treg) T cells in vivo. By utilizing IL-18
gene-deficient donor versus recipient animals we found that the major cytokine production during the early
phase of aGVHD induction was recipient derived, whereas donor hematopoietic cells contributed significantly
less. By generating IL-187/ luciferase transgenic mice we were able to investigate the impact of IL-18 on
Tconv and Treg expansion and trafficking with in vivo bioluminescence imaging. Although migration to
secondary lymphoid organs did not have a significantly impact from the absence of host IL-18, Tconv but not
Treg expansion increased significantly. Absence of host IL-18 production translated into lower IFN-v levels in
the early phase after transplantation. We conclude that host-derived IL-18 is a major factor for IFN-y
production that may have a protective effect on CD4*-mediated aGVHD, but is nonessential for Treg
expansion in an allogeneic environment.

© 2007 American Society for Blood and Marrow Transplantation
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INTRODUCTION

The production of proinflammatory cytokines,
such as interleukin (IL)-1, IL.-2, T1L.-12, IL.-18, TNF,
and IFN-vy, is a key feature of acute graft-versus-host
disease (aGVHD) and the balance between T helper 1
(Thl) and Th2 cytokine production determines end-
organ damage [1]. Although TNF was demonstrated
to affect regulatory T cell (Treg) function [2], the
impact of IL-18, which is increased in human and
murine aGVHD [3,4], on Treg is not yet defined.
IL-18R engagement leads to MyD88 signaling fol-
lowed by activation of TNF-receptor-associated fac-
tor and NFkB [5], which enhances the production of
IFN-v [6,7]. Interestingly, IFN-v and other Th1 cy-
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Interleukin-18

tokines have been shown to be involved in mecha-
nisms that are protective against aGVHD [8-12].
Cell types that are relevant in GVHD with re-
ported ability to produce IL-18 include macrophages,
Kupffer cells, dendritic cells, T cells, intestinal epithe-
lial cells, and keratinocytes [4,13-15]. Itoi and colleges
[4] have shown that IL-18 levels were only slightly
elevated when Caspase-1-deficient recipients were en-
grafted with wild-type H-2 disparate splenocytes. Al-
though this indicates that IL-18 secretion during
GVHD is dependent on host caspase-1, there is cur-
rently no information on the relative contribution of
host-versus-donor to IL-18 cytokine levels and
whether host or donor IL-18 is critical for GVHD
induction and promotion. Increased levels of serum
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IL-18 and IL-18(R)a receptor expression on T lym-
phocytes were found in patients that developed
GVHD after aHCT [3,16]. In murine studies IL.-18
was demonstrated to have a differential impact on
CD4 compared to CD8-mediated GVHD [17], to be
critical for Fas-mediated donor T cell apoptosis [18],
and to reduce GVHD severity when administered to
the donor prior to transplantation [19]. Another study
confirmed that IL-18 neutralization increased T cell
expansion, but did not influence GVHD severity,
which may be explained by the use of a different
model with nonirradiated recipients and the difference
in IL-18 neutralization by a soluble IL-18 binding
protein [20]. CD4"CD25" regulatory T cells (Treg)
have been demonstrated to play a major role in mod-
ulating GVHD [21,22]. The relevance of IL-18 for
this cell population has so far only been investigated in
a model of oral tolerance induction, a study that in-
dicated that IL-18 is essential for the induction of
antigen-specific regulatory T cells, which were de-
fined by CD25 expression and the production of
transforming growth factor TGF-B [23].

In the present study we investigate the kinetics of
IL-18Ra expression on Treg and Tconv as well as the
origin and the relevance of IL-18 in the early phase
after transplantation for Treg and Tconv expansion by
utilizing cytokine deficient donor or recipient animals.

MATERIALS AND METHODS
Mice

C57Bl/6 (H-2k"), IL-18~/~ (H-2k"), FVB/N (H-
2k9), and Balb/c (H-2k") mice were purchased from
Jackson Laboratory (Bar Harbor, ME) or Charles
River Laboratory (Wilmington, MA). Mice were used
between 6 and 12 weeks of age. Only male-to-male or
female-to-female combinations were used for trans-
plant experiments. The luciferase-expressing (fuc™)
transgenic FVB/N line was generated as previously
described [24]. Juc™ offspring of the transgenic
founder line FVB-L2G85 were backcrossed onto the
C57Bl/6 background (F8) and then crossed with IL-
18/~ animals, both on C57BI/6 background. All an-
imal protocols were approved by the University Com-
mittee on Use and Care of Laboratory Animals at
Stanford University.

Generation of Luciferase-(luc*) Transgenic
IL-187'~ Mice

To track Treg and Tconv in the absence of IL-18
production by donor-derived hematopoetic cells, we
generated luciferase transgenic IL-187/" animals.
The /uc™ transgenic line [24] was backcrossed onto the
C57Bl/6 background (F8) and then crossed with IL-
187/~ animals (C57BI/6). IL-18 gene deficiency was
verified by RT-PCR (Figure 1A) and luciferase ex-
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pression was monitored by bioluminescence imaging
(Figure 1B). The employed /uc*/IL-18"/~ mice were
bred for more than 10 generations on the C57Bl/6
background.

Flow Cytometric Cell Purification and Analysis

The following antibodies were used for flow cyto-
metric analysis: unconjugated anti-CD16/32 (2.4G2),
CD4 (RM4-5), CD8« (53-6.7), CD25 (PC61), CD11c
(M1/70), CD45R/B220 (RA3-6B2), H-2K9 (KH114),
H-2K¢ (34-2-12) from BD Pharmingen (San Diego,
CA) and eBiosciences (San Diego, CA). Foxp3 stain-
ing was performed using the intracellular Foxp3 stain-
ing kit (Ab: FJK-16s) as described in the manufac-
turer’s instructions (eBioscience). Goat antimurine
IL-18Ra (R&D Systems, Minneapolis, MN) staining
was followed by SP-biotinylated mouse antigoat IgG
(H plus L) diluted in PBS (Jackson ImmunoResearch
Laboratories, West Grove, PA) for 20 minutes. Cells
were subsequently washed twice in PBS and then
stained with streptavidin-APC (BD PharMingen).
Staining was performed in the presence of purified
anti-CD16/32 at saturation to block unspecific stain-
ing. Propidium iodide (Sigma, St. Louis, MO) was
added prior to analysis to exclude dead cells. All ana-
lytical flow cytometry was done on a modified dual
laser LSRScan (BD Immunocytometry Systems, San
Diego, CA) in the Shared FACS Facility, Center for
Molecular and Genetic Medicine at Stanford using
FlowJo software (TreeStar, Ashland, OR) for data
analysis.

Cell Isolation and Sorting

Single-cell suspensions from cervical lymph nodes
(cLN), axillary lymph nodes (aLN), inguinal lymph
nodes (iLN), mesenteric lymph nodes (mLN), and
spleens were enriched for CD25™" cells after sequen-
tial staining with anti-CD25 PE (BD PharMingen)
and anti-PE magnetic beads using the autoMACS
system (POSSEL program, Miltenyi Biotec, Auburn,
CA). CD25" cells were then stained with anti-CD4
APC and sorted on a MoFlow cell sorter (Becton
Dickinson, Mountain View, CA) for the CD25hh
population (15%-20% of the enriched CD25" cells)
or for CD4"CD25" cells. The CD4"CD25" popu-
lation was routinely >95% Foxp3™*. T cell-depleted
bone marrow (TCD BM) was obtained through neg-
ative depletion using anti-CD4 and anti-CD8 mag-
netic beads (Miltenyi Biotech). For isolation of lym-
phocytes from the liver, the portal vein was perfused
with PBS, the organ was removed and homogenized,
and the lymphocytes were separated by Ficoll gradient
centrifugation.
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Figure I. Generation of IL-187/" luciferase transgenic C57Bl/6 mice. A, Genomic DNA was isolated from wild-type, heterozygote, or
homozygote IL-18 '~ C57BI/6 mice and amplified by RT PCR with IL-18 and IL-18 " neo cassette specific primers. No IL-18 gene product
(116 bp) was detected in IL-18"/~ C57BI/6 that had been crossed on the luc background. B, The constitutive expression of the luc transgene

is monitored by bioluminescence imaging. Presented is a representative homozygote IL-187/~ C57Bl/6 mouse with (left) or without (right)

the luc transgene.

Real-Time Quantitative PCR for Foxp3

Total RNA was isolated from fresh cell pellets
using the RNeasy MiniKit (Qiagen, Valencia, CA) and
genomic DNA was eliminated by digestion with a
modified proprietary Dnase (DNA-free; Ambion,
Austin, TX). Total RNA (500 ng) was mixed with
dT16 primer in a volume of 11 pL, incubated at 65°C
for 10 minutes, and immediately placed on ice. Fol-
lowing addition of 100 units Superscript II reverse
transcriptase (GiBCO, Carlsbad, CA) reverse tran-
scription was performed for 2 hours at 42°C in 1X RT

reaction buffer (GiBCO), 10 pM DTT, 500 pM
dNTP (Amersham Biosciences, Pittsburgh, PA) with
2.5 pM dT16 primer in a volume of 20 nL. PCR
reactions were performed in a final volume of 20 L
with ¢cDNA prepared from 20 ng RNA and a final
concentration of 1X SYBR® Green PCR Master Mix
(ABI, Foster City, CA) and 200 nM of each primer
(sequences: FoxP3 forward, GGAGCCGCAAGC-
TAAAAGC; FoxP3 reverse, TGCCTTCGTGCC-
CACTG; GAPDH forward, GTCCTGAAGTAT-
GTCGTGGAGTCTAC; and GAPDH reverse,
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GGCCCCGGCCTTCTCQ). The reaction was run in
an ABI 7700 Sequence Detection System with the
following cycling conditions: 50°C for 2 minutes,
94°C for 10 minutes, then 40 cycles of 94°C for 15
seconds and 60°C for 60 seconds. For each gene a
standard curve was prepared and triplicate measure-
ments were performed for each sample.

GVHD Model

aGVHD was induced as described previously [25].
Briefly, recipients were given 5 X 10° TCD-BM cells
after lethal irradiation with 800 c¢Gy. To induce
aGVHD the following numbers of CD4™ T cells were
given: 8 X 10° (C57Bl/6 — Balb/c), 2 X 10° (FVB/N —
C57B1/6), 2 X 10° (Balb/c — C57BI/6). For Treg traf-
ficking studies in the FVB/N — C57B1/6 model, 5 X
10° CD4"CD25M8" luc+ Treg were injected on dO.
Transplanted mice were housed in autoclaved cages
and kept on antibiotic water (Sulfomethoxazole-Tri-
methoprim, Schein Pharmaceutical, Corona, CA).

In Vivo Bioluminescence Imaging (BLI)

In vivo BLI was performed as previously described
[26]. Briefly, mice were injected intraperitoneally with
luciferin (10 wg/g bodyweight). Ten minutes later
mice were imaged using an IVIS200 charge-coupled
device (CCD) imaging system (Xenogen, Alameda,
CA) for 5 minutes. Imaging data were analyzed and
quantified with Living Image Software (Xenogen) and
IgorProCarbon (WaveMetrics, Lake Oswego, OR).

Histopathology

Tissues were fixed with 10% formalin, embedded
in paraffin, and sections of 5 pm thickness were
mounted on positively charged precleaned microscope
slides (Superfrost/Plus; Fisher Scientific, Hampton,
NH). Hematoxylin/eosin (H/E) staining of paraffin-
embedded tissue sections was performed according to
standard protocols. Tissues from small bowel, large
bowel, and liver were evaluated by an experienced
pathologist (N.K.) according to a previously published
histopathology scoring system [27]. Evaluation of the
stained tissue sections was performed on a Nikon
microscope (Eclipse, TE 300; Melville, NY). Standard
magnifications were 200X/numerical aperture 0.45
and 400X /numerical aperture 0.60. Microscopic pho-
tos were obtained using a Spot digital camera (Diag-
nostic Instruments, Sterling Heights, MI).

In Vitro Treg/Tconc Activation Culture

Treg or Tconv cells (C57B1/6) were incubated
with irradiated (30 Gy) CD11c" cells derived from
Balb/c mice. Each cell type in a concentration of 2 X

10° per flat-bottom well. After 48 hours cells were
collected, washed, and analyzed by FACS for IL-18Ra«
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surface expression in combination with CD4 and in-
tracellular Foxp3 staining.

ELISA for IL-18 and IFN-y

Serum was collected from Balb/c recipients on
days 1, 2, 3, 5, and 8 after transplantation. ELISA
assays were performed according to the manufac-
turer’s instructions (R&D Systems). Briefly, samples
were diluted 1:2 to 1:5, and the cytokine was captured
by the specific primary mAb precoated on the micro-
plate and detected by horseradish peroxidase-labeled
secondary mAbs. Plates were read at 450 nm using a
microplate reader (model Spectra Max 190; Bio-Rad
Labs, Richmond, CA). Recombinant murine cytokines
(BD PharMingen) were used as standards. Samples
and standards were run in duplicate, and the sensitiv-
ity of the assays was 16 to 20 pg/mL for each cytokine,
depending on the sample dilution.

Statistical Analysis

Differences in animal survival (Kaplan-Meier sur-
vival curves) were analyzed by log-rank test. Differ-
ences in mean fluorescence intensity (MFI), lym-
phocyte counts, Foxp3 RNA expression, thymidine
incorporation, proliferation of luc transgenic T cells,
and serum cytokine levels were analyzed using the
2-tailed Student’s #-test. Error bars indicate the stan-
dard deviation from the geometric mean. A P-value
<.05 was considered statistically significant.

RESULTS

CD4 Mediated aGVHD Severity Is Enhanced in IL
18-Deficient Hosts

To investigate the impact of IL-18 deficiency of
the host on aGVHD severity in our model, CD4
Tconv (H-2k9) were transplanted into lethally irradi-
ated C57B1/6 recipients that were either wild-type or
IL-18 deficient. Interestingly, IL-18 deficiency of the
host led to increased aGvHD severity as assessed by
weight loss (Figure 2A) and more severe histopatho-
logic GVHD damage of the colon with multiple crypt
abscesses when the host was IL-18 deficient (Figure
2B). Histopathology scoring from small bowel, large
bowel, and liver tissue samples harvested on day 10
after BMT from 5 animals per group, demonstrated
the highest GVHD severity (*P < .05) in IL-18-
deficient recipients (Figure 2B). This translated into a
more aggressive course of GVHD in the wt — IL-
187/~ combination compared to the wt — wt combi-
nation (Figure 2C).

IL-18Ra Expression on Tconv and Treg Cells Is
Upregulated in the Presence of Alloantigen

Based on the observation that the absence of IL-18
led to a more severe course of aGVHD we aimed to



Impact of Host IL-18 on Treg and Tconv

study the relevance of IL-18 for Treg, which have
been shown to promote transplantation tolerance in
models of aGVHD [21] and solid organ transplanta-
tion [28]. Therefore, in a first step IL-18Ra surface
expression was evaluated on conventional CD4"
Tcells (Tconv) and Treg cells from mesenteric
(mLN), cervical (cLN), axillary (aLN), and mesenteric
(mLN) lymph nodes, spleen, liver, and thymus, as
shown for the respective experiments. Gating on
CD4" Foxp3* versus CD4"Foxp3~ demonstrated
comparable expression of IL-18Ra on Treg and
Tconv cells (Figure 3A). Data are presented as the
difference (A) between the mean fluorescence inten-
sity (MFI) of the positive stain (anti-IL-18Ra) and the
MEFI of the negative control (goat Ig alone). Interest-
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ingly IL-18Ra surface expression differed with respect
to the origin of the cell population being the highest
in the lymph nodes (73 and 87) and lowest in liver-
derived T cells (37 and 39). Activation for 48 hours
with allogeneic APCs led to an upregulation of the
IL-18Ra on both Tconv and Treg (Figure 3B), sug-
gesting that IL-18 signaling may be relevant during
alloantigen driven T cell responses.

Intact Treg Development and Function in the
Absence of IL-18

To study the relevance of intact IL-18 production
for the development of Treg we employed mice with
a disrupted IL-18 gene that have been previously
described [29]. Total lymphocyte counts in IL-18~/~
and IL-18""* mice were comparable with wild-type
animals (Figure 4A). Foxp3 expression within the
CD4" cell population was comparable in IL-18-defi-
cient compared to wild-type animals as quantified by
real-time PCR (Figure 4B) and intracellular Foxp3
protein analysis by FACS (Figure 4C). To further
investigate if there was a functional difference, Treg
from IL-18/~ and wild-type mice were compared
with respect to their capability to suppress alloantigen
driven T cell proliferation. Importantly, there were no
significant differences with respect to suppressor func-
tion by Treg derived from IL-187/~, IL-187" or
wild-type mice (Figure 4D). These data indicate that
Treg that have developed in the absence of IL-18 are
functionally suppressive. Furthermore, these findings
are in line with the observation that IL-18-deficient

Fig. 2. IL-18 deficiency of the recipient enhances GVHD severity.
A, C57B1/6 wild-type or IL-187/" mice were given 5 X 10°
TCD-BM cells and 2 X 10° CD4" T cells (both H-2k9) after lethal
irradiation with 800 cGy. Weight change of mice receiving
TCD-BM (@, n = 15), with T cells from wild-type donors trans-
planted into wild-type recipients (A, n = 15) or with T cells from
wild-type donors transplanted into IL-187/" recipients (], n =
15). B, Ten days after transplantation, mice from the indicated
group were sacrificed for histologic examination. Representative
colon sections stained by conventional H&E of mice receiving
TCD-BM (i), wild-type = wild-type (ii) or wild-type = IL-18-
deficient recipients (iii) are shown. GVHD tissue damage manifests
as crypt abscess (arrow) and mucosal denudation (asterix). IL-18
deficiency of the host leads to more severe histopathologic GVHD
damage of the colon with multiple crypt abscesses. Original mag-
nification is X200. Cumulative histopathology scoring from small
bowel, large bowel, and liver tissue samples harvested on day 10
after BMT from 3 representative animals per group is shown (*P <
.05). C, Survival of mice receiving TCD-BM alone (@, n = 5) with
T cells from wild-type donors transplanted into IL-18-deficient (],
n = 5) or wild-type (A, n = 5) recipients. Percentage survival of
C57B1/6 recipients is significantly reduced when IL-187" com-
pared to wild-type recipients are used (] versus A, P = .027).
Survival data from 1 of 3 independent experiments is shown.
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Figure 3. Expression of IL-18Ra on regulatory and conventional T cells. A, The indicated lymphoid organs and the liver were harvested from
naive C57B6 mice. Upper row: CD4 Foxp3 " cells, lower row: CD4"Foxp3~ cells. Open histogram: anti-IL-18Ra Ab staining, filled
histogram: isotype control staining. One representative of 4 independent experiments is shown. (LN = pooled mesenteric, cervical, axillary,
and inguinal lymph nodes). Numbers refer to the difference (A) between the MFI of the positive stain and the MFT of the isotype (negative)
stain. B, CD4"CD25" or CD4"CD25 cells (HI-2k") derived from the spleen, were activated by coculture with irradiated (30 Gy) CD11c*
APCs (H-2k?) for 48 hours and stained for 18Ra and intracellular Foxp3. The presented histograms display gating on CD4* Foxp3™* cells or

CD4"Foxp3 ™~ cells. Mean fluorescence intensity for 18Ra surface expression increases significantly in both Treg and Tconv during alloantigen
activation (MFI no Ag versus alloAg: 65.3 = 2 versus 127.4 = 7, P < .05 and 69.5 * 3 versus 108.6 = 2.1, P < .05, respectively). Solid black

line: isotype control.

mice display a defect in natural killer (NK) cell func-
tion but no signs of autoimmunity [29].

IL-18 Production of the Donor is Nonessential for
aGVHD Development

To study the impact of donor IL-18 on the course
of aGVHD we employed TCD-BM and /uc” CD4 T
cells from IL-18-deficient donors. Transplantation of
luc*t TL-187'~ donor CD4 T cells into wild-type an-
imals (C57B1/6 — Balb/c) resulted in a comparable
course of aGVHD with no survival difference (Figure
5A). The expansion kinetics and homing pattern of
luc* TL-187"" and wild-type donor CD4 T cells was
comparable (Figure 5B). Histopathologic analysis
confirmed the survival data, indicating an intact colon
mucosa in the TCD-BM group, whereas crypt ab-
scesses and mucosal denudation as signs of aGVHD
tissue damage to the intestinal tract were found to a
comparable extent in recipients of wild-type and IL-
18-deficient donor T cells (Figure 5C). Cumulative
histopathology scoring from small bowel, large bowel,
and liver tissue derived from 3 animals per group,
demonstrated comparable GVHD severity in IL-18-
deficient compared to wild-type donors (Figure 5C).

These data indicate that donor IL-18 production does
not have an impact on aGVHD severity.

Increased IL-18 Levels during aGVHD Are Mainly
Host Derived and Absence of Host IL-18
Translates into Lower IFN-y Production

The observation that the course of CD4 T cell-
induced aGVHD was independent of donor IL-18
production prompted us to measure the IL-18 serum
levels in the situation where either the donor or the
recipient was deficient for the cytokine. Serum was
collected at the different time points, and was signif-
icantly reduced when the recipient was IL-18 deficient
(Figure 6A). Interestingly, donor contribution to the
IL-18 production in the early phase after transplanta-
tion (days 1-5) was minimal as evidenced by IL-18
levels that were comparable to the wild-type — wild-
type situation (Figure 6A). At later time points (day 8)
there was also a slight decrease of the cytokine when
the donor was IL-18 deficient (Figure 6A). Because
IL-18 can induce IFN-y production in T cells and
NK cells [30], we investigated the levels of this cyto-
kine in parallel. Interestingly, IFN-vy levels were sig-
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Figure 4. CD4"Foxp3™ T cells develop normally and are functionally suppressive in the absence of IL-18. A, The absolute numbers of
lymphocytes in the peripheral blood of wild-type, heterozygote or homozygote IL-18 '~ C57Bl/6 mice were determined. Each data point

represents an individual animal. No significant difference between the groups. B, Relative Foxp3 mRNA expression level in CD4 T cells
isolated from the spleens of wild-type, heterozygote or homozygote IL-187~ C57Bl/6 mice (*P = .24, **P = .09). C, Frequency of
CD4"Foxp3 ™ cells isolated from the spleens of wild-type, heterozygote or homozygote IL-18/~ C57Bl/6 mice. D, Treg isolated from the
spleens of wild-type, heterozygote or homozygote IL-18"/~ C57Bl/6 mice were used to suppress alloantigen driven proliferation of
CD4"CD25" cells (H-2k") after 72 hours. Stimulator cells were irradiated 30 Gy) CD11c* APCs (H-2k%). Thymidine incorporation of
conventional T cells is significantly reduced when Treg are included in the culture at different ratios. One proliferation analysis of 3

independent experiments is shown.

nificantly reduced when the recipient, but not when
the donor, was IL18 deficient (Figure 6B).

Absence of Host IL-18 Predicts Increased CD4
Tconv but Not Treg Expansion

Based on the observation that the host has the
major contribution to the IL-18 production during
aGVHD, we next investigated the expansion patterns
of Treg and Tconv in the absence of host IL-18
production. Therefore, we transferred Juc* Treg (H-

2k9) into lethally irradiated C57B1/6 recipients that
were either wild-type or IL-18 deficient. Treg expan-
sion was comparable in the presence or absence of
host IL-18 production as shown for 3 representative
animals at 2 time points after BMT (Figure 7A) and as
quantified in photons over total body area at serial
time points (Figure 7B). To further evaluate the rel-
evance of increased IL-18 levels during aGVHD for
Treg expansion, /uc® CD4 Tconv or Treg (H-2k9)
were transplanted into lethally irradiated C57B1/6
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Figure 5. IL-18 deficiency of the donor does not have an impact on CD4 T cell expansion and GVHD severity. A, Balb/c mice were given
5 X 10° TCD-BM cells and 8 X 10° CD4™ T cells (both H-2kP) after lethal irradiation with 800 cGy. Survival of mice receiving wild-type
TCD-BM alone (@, n = 5), with T cells from wild-type donors (A, n = 5) or TCD-BM and T cells from IL-18-deficient donors (], n =
5). Percentage survival of Balb/c recipients is not different when IL-18""~ donors are used (A versus [], NS). Survival data from 1 of 3
independent experiments is shown. B, Expansion of luciferase labeled T cells was quantified in emitted photons over total body area at serial
time points after BMT. BLI signal intensity of mice receiving TCD-BM (@, n = 5), with T cells from wild-type donors (A, n = 5) or TCD-BM
and T cells from IL-18-deficient donors (], n = 5). C, Ten days after transplantation, mice from the indicated groups were sacrificed for
histologic examination. Representative colon sections stained by conventional H&E of mice receiving TCD-BM (i), with T cells from
wild-type donors (ii) or IL-18-deficient donors (iii) are shown. GVHD tissue damage manifests as crypt abscess (arrow) and mucosal
denudation (asterix). Comparable histopathologic GVHD damage is seen when the donor is IL-18 deficient. Original Magnification, X200.
Cumulative histopathology scoring from small bowel, large bowel, and liver tissue samples harvested on day 10 after BMT from 3
representative animals per group is shown (NS = not significant).

recipients that were either wild-type or IL-18 defi-
cient. Bioluminescence imaging at serial time points
after BMT disclosed an increased expansion of Juc*
CD4 Tconv cells in the absence of recipient IL-18
(Figure 7C and D).

DISCUSSION

Allogeneic BMT is a potentially curative thera-
peutic option for many malignant and nonmalignant
diseases. However, the beneficial effects of the donor
immune system on engraftment and elimination of
residual malignant cells are closely linked to the oc-

currence of aGVHD, which leads to treatment-related
mortality (TRM). Treg have been shown to reduce
the incidence and severity of aGVHD in rodent mod-
els [21,22,31], and increased Foxp3 ™ Treg cells in the
hematopoietic graft were shown to predict a reduced
risk for aGVHD in human transplant recipients [32].
Expansion and function of Treg relies on IL-2 [25,33-
35], whereas the role of other IL-2Ry chain-depen-
dent cytokines such as IL-7 and IL-15 are still under
investigation [36]. Insight into the cytokine milieu
that can favor Treg function may help to manipulate
the function of this cell population. In this report we
evaluated the role of IL-18 on aGVHD and the dif-
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Figure 6. Host but not donor-derived I1.-18 is the major contrib-
utor to elevated IL-18 serum levels during the early phase of
aGVHD. A, Serum was collected from the indicated donor/recipi-
ent combinations. Wild-type (M) represents the mean IL-18 serum
level derived from 5 animals of the C57B1/6 — Balb/c and 5 animals
from the Balb/c — C57Bl/6 combination. Donor IL-187/~ (@)
represents the mean IL-18 serum level derived from 5 recipients of
the C57Bl/6™'~/~ — Balb/c combination and recipient IL-18 "~
(E) represents the mean IL-18 serum level derived from 5 recipient
animals of the Balb/c => C57Bl/6™'8~/~ combinations. IL-18 se-
rum levels are significantly lower when recipients are IL-18 defi-
cient at all indicated time points (P < .05). On day 8 the IL-18
serum level is significantly reduced in the donor IL-18 group com-
pared to the wild-type group (P < .05). B, Serum was collected from
the indicated donor/recipient combinations. Wild-type (M) repre-
sents the mean IFN-y serum level derived from 5 animals of the
C57Bl/6 — Balb/c and 5 animals from the Balb/c — C57Bl/6
combinations. Donor IL-187/" (&) represents the mean IFN-vy
serum level derived from 5 recipients of the C57Bl/6™'87/~ —
Balb/c combination and recipient IL-18"/~ (&) represents the
mean IFN-y serum level derived from 5 recipient animals of the
Balb/c — CS57Bl/6%'8~/~ combination. IFN-y serum levels are
significantly lower when recipients are IL-18 deficient at all indi-
cated time points (P < .05).

ferential impact on Tconv and Treg expansion. Inter-
estingly, we found that expression of the IL-18Ra was
similar in Treg and Tconv isolated from different
organs. Because in the in vitro studies IL-18 from the
stimulators and irradiated non-Treg responders was
present we did not address the functional role of IL-18
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on Treg suppressor function but showed that Tregs,
which developed in the absence of IL-18, are equally
suppressive as their wild-type counterparts.

Our in vivo data indicate that ontogeny, function,
and homeostasis of Treg remain intact in the absence
of IL-18 in healthy mice. In a model of oral tolerance
induction, IL-18-deficient recipients did not develop
Treg in Peyer’s patches after feeding with BLG [23].
The observation of Tsuji and Nowak. [23] that IL-18
was relevant for Treg-mediated oral tolerance induc-
tion could be from the requirement of the cytokine for
Treg in the situation where an immune response re-
quires regulation. We therefore investigated the rele-
vance of IL-18 for Treg and Tconv during aGVHD as
an aberrant immune response. Our observation that
donor deficiency for IL-18 did not affect CD4 T cell
expansion and the course of aGVHD made us hypoth-
esize that production of IL-18 by the host may be
more relevant for the previously reported increased
IL-18 levels after BMT [3,4].

Indeed, we found IL-18 levels to be significantly
decreased when the recipient, but not the donor, an-
imals were IL-18 deficient. This suggested that in the
early phase after transplantation residual host hema-
topoietic cells such as macrophages, Kupffer cells, and
dendritic cells, which can survive the first week after
the myeloablative irradiation, produce significant
amounts of IL-18. Other recipient type cells with
known ability to produce IL-18 are intestinal epithe-
lial cells and keratinocytes [4,13-15]. These recipient
cells may secrete IL-18 triggered by tissue damage
because of the conditioning regimen. Interestingly,
IL-18, in contrast to other cytokines, is stored as
biologically inactive precursor (pro-IL-18) and is se-
creted when appropriate cleaving enzymes are present
[37,39]. Previous studies have demonstrated the in-
volvement of a caspase-1-like molecule and caspase-1
for cleavage of IL-18 [4, 38]. Lipopolysaccharide
(LPS), which enhances aGVHD severity and leaks
into the blood stream after conditioning induced
bowel wall damage [39], has been shown to induce
caspase-1, which is critical in the process of IL-18
secretion [40]. Our observation that increased IL-18
serum levels after BMT are host derived is compatible
with the finding that caspase-1-deficient recipients
engrafted with wild-type H-2 disparate splenocytes
displayed decreased IL-18 production [4]. Our study
is the first to delineate the relative contribution of the
host on increased IL-18 cytokine levels during the
early phase after BMT that has a functional impact on
the aGVHD course. With respect to the clinical situa-
ton, the manipulation of GVHD through the cytokine
IL-18 may be difficult to achieve based on its opposing
effects on CD4 compared to CD8 T cells [17] and
because of the fact that human GVHD is not restricted
to either subset, as it can be studied in murine models
with selective MHC class I or class II differences.
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Figure 7. IL-18 deficiency of the recipient increases expansion CD4 T cells but not Treg cells. A, C57Bl/6 wild-type or IL-18"/~ mice were
given 5 X 10° TCD-BM cells and 2 X 10° luciferase transgenic (uc*) CD4*CD25"8" Treg cells (both H-2k9) after lethal irradiation with 800
cGy. Expansion of Juc® Treg cells is depicted in 3 representative recipients per group on days 6 and 10 after BMT. B, Expansion of

luciferase-labeled Treg cells was quantified in emitted photons over total body area at serial time points after BVM'T. BLI signal intensity of mice
receiving TCD-BM (@, n = 15), with T cells from wild-type donors transplanted into wild-type recipients (A, n = 15) or with T cells from
wild-type donors transplanted into IL-18""" recipients (], n = 15). C, Expansion of /uc* Treg cells is depicted in 3 representative recipients
per group on days 6 and 10 after BM'T. D, Expansion of /uc"™ Treg cells was quantified in emitted photons over total body area at serial time
points after BMI'T. BLI signal intensity of mice receiving TCD-BM (@, n = 15), with Treg from wild-type donors transplanted into wild-type
recipients (A, n = 15) or with T cells from wild-type donors transplanted into IL-18"/" recipients (], n = 15). T cell expansion signal is

significantly higher in the IL18/~ recipients compared to the wild-type recipients at the indicated time points (*P < .05).

Because IL-18 has been demonstrated to induce
IFN-vy production [7], a cytokine with known rele-
vance for downmodulation of aGVHD in the early
phase after BMT [8] and for long-term allograft sur-
vival [41], we studied the impact of host IL-18 defi-
ciency on IFN-vy secretion. We found that reduced
IL-18 production in IL-18-deficient recipients was
paralleled by diminished IFN-y serum levels. This
finding may explain why the absence of host IL-18
resulted in more aggressive aGVHD, because IFN-y
was shown to induce death of activated donor CD4
cells [17]. IL-18 may mediate its effects not only
directly by augmentation of IFN-vy production [42,43]
but also by increasing the expression of the IL-12R
complex, thereby enhancing the effects of IL-12 [44].
Interestingly, IL-12 has been demonstrated to be crit-
ical for tolerance induction in solid organ transplan-
tation [45] and to reduce aGVHD [12]. A recent in

vivo study demonstrated a unique role for IFN-vy in
the functional activity of alloantigen-reactive Treg
cells during the development of operational tolerance
to donor skin allografts [46]. In our studies the ab-
sence of host IL-18 was paralleled by reduced IFN-,
and we did not find any change in Treg proliferation
under these conditions. Further studies are needed to
address the role of reduced IFN-y levels on Treg
suppressor function in the BMT model.

Because the expansion kinetics of Treg were in-
dependent of host IL-18, the protective effect of host
IL-18 on aGVHD was not through immunoregula-
tion by increased Treg expansion. In contrast to data
from the oral tolerance model [23], we did not find an
essential role of IL-18 for the induction of Treg cells,
which may result from model specific differences.

We conclude that Treg and Tconv express com-
parable levels of IL-18Ra, which is upregulated in
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response to alloantigen. Absence of host, but not do-
nor, IL-18 production translated into lower IFN-y
levels in the early phase after transplantation and re-
sulted in a more rapid course of aGVHD. Host-de-
rived IL-18 has a protective effect in CD4 " -mediated
aGVHD, possibly through increased IFN-y produc-
tion. IL-18 is nonessential for Treg expansion in an
allogeneic environment; however, it downmodulates
CD4" Tconv expansion. In the absence of IL-18,
increased CD4" T cell proliferation results in more
aggressive aGVHD.
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